Format source files

This commit is contained in:
2023-02-18 10:37:38 +01:00
parent 76d93bb1cf
commit d09d4d3d92
12 changed files with 793 additions and 850 deletions

View File

@@ -4,7 +4,7 @@ CFLAGS = -std=c++17 -Wall -g -Wextra
CPPS = $(wildcard test/*.cpp)
EXES = $(patsubst %.cpp, %.out, $(CPPS))
.PHONY: all clean rebuild check
.PHONY: all clean rebuild check format
all: $(EXES)
@@ -19,5 +19,11 @@ EXESQUOTED = $(patsubst %, "%", $(EXES))
check: all
./execute-all.sh
format:
find src/ -name *.cpp -exec clang-format -i {} \;
find src/ -name *.hpp -exec clang-format -i {} \;
find test/ -name *.cpp -exec clang-format -i {} \;
find test/ -name *.hpp -exec clang-format -i {} \;
%.out: %.cpp
$(CC) $(CFLAGS) $< -o $@

View File

@@ -5,187 +5,174 @@
namespace List
{
template<class T>
struct Node
{
T value;
std::unique_ptr<Node<T>> next;
template<class T> struct Node
{
T value;
std::unique_ptr<Node<T>> next;
Node(T const & _value)
: value(_value),
next(nullptr)
{}
};
Node(T const & _value) : value(_value), next(nullptr) { }
};
template<class T>
class List
{
private:
std::unique_ptr<Node<T>> root;
Node<T> * tailPtr;
std::size_t size;
template<class T> class List {
private:
std::unique_ptr<Node<T>> root;
Node<T> * tailPtr;
std::size_t size;
public:
void Append(T const & value)
{
if(size == 0)
{
root = std::make_unique<Node<T>>(value);
tailPtr = root.get();
++size;
return;
}
public:
void Append(T const & value)
{
if(size == 0)
{
root = std::make_unique<Node<T>>(value);
tailPtr = root.get();
++size;
return;
}
tailPtr->next = std::make_unique<Node<T>>(value);
tailPtr = tailPtr->next.get();
tailPtr->next = std::make_unique<Node<T>>(value);
tailPtr = tailPtr->next.get();
++size;
}
++size;
}
void Prepend(T const & value)
{
if(size == 0)
{
root = std::make_unique<Node<T>>(value);
tailPtr = root.get();
++size;
return;
}
void Prepend(T const & value)
{
if(size == 0)
{
root = std::make_unique<Node<T>>(value);
tailPtr = root.get();
++size;
return;
}
auto newRoot = std::make_unique<Node<T>>(value);
newRoot->next.swap(root);
root.swap(newRoot);
auto newRoot = std::make_unique<Node<T>>(value);
newRoot->next.swap(root);
root.swap(newRoot);
++size;
}
++size;
}
void Insert(T const & value, std::size_t const index)
{
if(index >= size)
{
throw std::out_of_range("Index is greater or equal to size.");
}
void Insert(T const & value, std::size_t const index)
{
if(index >= size)
{
throw std::out_of_range("Index is greater or equal to size.");
}
if(index == 0u)
{
Prepend(value);
return;
}
if(index == 0u)
{
Prepend(value);
return;
}
++size;
++size;
Node<T> * prevPtr = root.get();
Node<T> * curPtr = root->next.get();
std::size_t currentIndex = 1u;
while(currentIndex < index)
{
prevPtr = curPtr;
curPtr = curPtr->next.get();
++currentIndex;
}
Node<T> * prevPtr = root.get();
Node<T> * curPtr = root->next.get();
std::size_t currentIndex = 1u;
while(currentIndex < index)
{
prevPtr = curPtr;
curPtr = curPtr->next.get();
++currentIndex;
}
auto newNode = std::make_unique<Node<T>>(value);
newNode->next.swap(prevPtr->next);
prevPtr->next.swap(newNode);
}
auto newNode = std::make_unique<Node<T>>(value);
newNode->next.swap(prevPtr->next);
prevPtr->next.swap(newNode);
}
void Delete(std::size_t const index)
{
if(index >= size)
{
throw std::out_of_range("Index is greater or equal to size.");
}
void Delete(std::size_t const index)
{
if(index >= size)
{
throw std::out_of_range("Index is greater or equal to size.");
}
--size;
--size;
if(index == 0u)
{
if(size == 0u)
{
root.release();
tailPtr = nullptr;
}
else
{
root = std::move(root->next);
}
return;
}
if(index == 0u)
{
if(size == 0u)
{
root.release();
tailPtr = nullptr;
}
else
{
root = std::move(root->next);
}
return;
}
// Is index last element? Note that we subtracted 1 from size above
if(index == size)
{
Node<T> * curPtr = root.get();
while(curPtr->next.get() != tailPtr)
{
curPtr = curPtr->next.get();
}
// Is index last element? Note that we subtracted 1 from size above
if(index == size)
{
Node<T> * curPtr = root.get();
while(curPtr->next.get() != tailPtr)
{
curPtr = curPtr->next.get();
}
tailPtr = curPtr;
tailPtr->next.release();
return;
}
tailPtr = curPtr;
tailPtr->next.release();
return;
}
Node<T> * prevPtr = root.get();
Node<T> * curPtr = prevPtr->next.get();
std::size_t currentIndex = 1u;
while(currentIndex < index)
{
++currentIndex;
prevPtr = curPtr;
curPtr = curPtr->next.get();
}
Node<T> * prevPtr = root.get();
Node<T> * curPtr = prevPtr->next.get();
std::size_t currentIndex = 1u;
while(currentIndex < index)
{
++currentIndex;
prevPtr = curPtr;
curPtr = curPtr->next.get();
}
prevPtr->next = std::move(curPtr->next);
}
prevPtr->next = std::move(curPtr->next);
}
T & Front()
{
if(size == 0u)
{
throw std::out_of_range("List is empty.");
}
T & Front()
{
if(size == 0u)
{
throw std::out_of_range("List is empty.");
}
return root->value;
}
return root->value;
}
T & Back()
{
if(size == 0u)
{
throw std::out_of_range("List is empty.");
}
T & Back()
{
if(size == 0u)
{
throw std::out_of_range("List is empty.");
}
return tailPtr->value;
}
return tailPtr->value;
}
T & operator[](std::size_t const index)
{
if(index >= size)
{
throw std::out_of_range("Index is greater or equal to size.");
}
T & operator[](std::size_t const index)
{
if(index >= size)
{
throw std::out_of_range("Index is greater or equal to size.");
}
Node<T> * currentNode = root.get();
std::size_t currentIndex = 0u;
while(currentIndex < index)
{
currentNode = currentNode->next.get();
++currentIndex;
}
Node<T> * currentNode = root.get();
std::size_t currentIndex = 0u;
while(currentIndex < index)
{
currentNode = currentNode->next.get();
++currentIndex;
}
return currentNode->value;
}
return currentNode->value;
}
std::size_t GetSize() const
{
return size;
}
std::size_t GetSize() const { return size; }
List()
: root(nullptr),
tailPtr(nullptr),
size(0)
{}
};
List() : root(nullptr), tailPtr(nullptr), size(0) { }
};
}

View File

@@ -1,76 +1,65 @@
#pragma once
#include "vector.hpp"
template<class T>
class RingBuffer
{
template<class T> class RingBuffer {
private:
Vector<T> data;
std::size_t head, tail;
Vector<T> data;
std::size_t head, tail;
void AdvanceHead()
{
++head;
if(head >= data.GetSize())
{
head = 0;
}
}
void AdvanceHead()
{
++head;
if(head >= data.GetSize())
{
head = 0;
}
}
void AdvanceTail()
{
++tail;
if(tail >= data.GetSize())
{
tail = 0;
}
if(tail == head)
{
AdvanceHead();
}
}
void AdvanceTail()
{
++tail;
if(tail >= data.GetSize())
{
tail = 0;
}
if(tail == head)
{
AdvanceHead();
}
}
public:
void Push(T const & value)
{
data[tail] = value;
AdvanceTail();
}
void Push(T const & value)
{
data[tail] = value;
AdvanceTail();
}
T Pop()
{
if(head == tail)
{
throw std::out_of_range("Cannot retrieve value when size is 0");
}
T Pop()
{
if(head == tail)
{
throw std::out_of_range("Cannot retrieve value when size is 0");
}
T const & toReturn = data[head];
AdvanceHead();
return toReturn;
}
T const & toReturn = data[head];
AdvanceHead();
return toReturn;
}
std::size_t GetSize() const
{
if(head <= tail)
{
return tail - head;
}
else
{
return tail + (data.GetSize() - head);
}
}
std::size_t GetSize() const
{
if(head <= tail)
{
return tail - head;
}
else
{
return tail + (data.GetSize() - head);
}
}
bool IsEmpty() const
{
return head == tail;
}
bool IsEmpty() const { return head == tail; }
RingBuffer(std::size_t const size)
: data(),
head(0),
tail(0)
{
data.Resize(size + 1ul);
}
RingBuffer(std::size_t const size) : data(), head(0), tail(0) { data.Resize(size + 1ul); }
};

View File

@@ -1,46 +1,38 @@
#pragma once
#include "vector.hpp"
template<class T>
class Stack
{
template<class T> class Stack {
private:
Vector<T> data;
std::size_t actualSize;
Vector<T> data;
std::size_t actualSize;
public:
void Push(T const & value)
{
++actualSize;
if(actualSize > data.GetSize())
{
data.Resize(actualSize);
}
void Push(T const & value)
{
++actualSize;
if(actualSize > data.GetSize())
{
data.Resize(actualSize);
}
data[actualSize - 1ul] = value;
}
data[actualSize - 1ul] = value;
}
T Pop()
{
if(actualSize == 0ul)
{
throw std::out_of_range("Cannot pop an empty stack.");
}
auto const retval = data[actualSize - 1ul];
--actualSize;
data.Resize(actualSize);
T Pop()
{
if(actualSize == 0ul)
{
throw std::out_of_range("Cannot pop an empty stack.");
}
auto const retval = data[actualSize - 1ul];
return retval;
}
--actualSize;
data.Resize(actualSize);
std::size_t GetSize() const
{
return actualSize;
}
return retval;
}
Stack()
: actualSize(0)
{
}
std::size_t GetSize() const { return actualSize; }
Stack() : actualSize(0) { }
};

View File

@@ -2,85 +2,73 @@
#include <cstdlib>
#include <stdexcept>
template<class T>
class Vector
{
template<class T> class Vector {
private:
T * data;
std::size_t reserveSize;
std::size_t size;
T * data;
std::size_t reserveSize;
std::size_t size;
void Allocate(std::size_t const allocationSize)
{
if(allocationSize == 0ul)
{
std::free(data);
data = nullptr;
reserveSize = 0ul;
return;
}
void Allocate(std::size_t const allocationSize)
{
if(allocationSize == 0ul)
{
std::free(data);
data = nullptr;
reserveSize = 0ul;
return;
}
if(allocationSize == size)
{
return;
}
if(allocationSize == size)
{
return;
}
void * result = std::realloc(data, sizeof(T) * allocationSize);
if(result == nullptr)
{
throw std::runtime_error("Cannot allocate the requested size of memory.");
}
void * result = std::realloc(data, sizeof(T) * allocationSize);
if(result == nullptr)
{
throw std::runtime_error("Cannot allocate the requested size of memory.");
}
reserveSize = allocationSize;
data = reinterpret_cast<T *>(result);
}
reserveSize = allocationSize;
data = reinterpret_cast<T *>(result);
}
public:
void Resize(std::size_t const newSize)
{
if (newSize > reserveSize)
{
Allocate(newSize);
size = newSize;
return;
}
void Resize(std::size_t const newSize)
{
if(newSize > reserveSize)
{
Allocate(newSize);
size = newSize;
return;
}
size = newSize;
}
size = newSize;
}
void Reserve(std::size_t const newReserveSize)
{
if(newReserveSize < size)
{
Allocate(size);
return;
}
void Reserve(std::size_t const newReserveSize)
{
if(newReserveSize < size)
{
Allocate(size);
return;
}
Allocate(newReserveSize);
}
Allocate(newReserveSize);
}
T & operator[](std::size_t const index)
{
if(index >= size)
{
throw std::out_of_range("Index is greater or equal to size.");
}
return data[index];
}
T & operator[](std::size_t const index)
{
if(index >= size)
{
throw std::out_of_range("Index is greater or equal to size.");
}
return data[index];
}
std::size_t GetSize() const
{
return size;
}
std::size_t GetSize() const { return size; }
std::size_t GetReserveSize() const
{
return reserveSize;
}
std::size_t GetReserveSize() const { return reserveSize; }
Vector()
: data(nullptr),
reserveSize(0ul),
size(0ul)
{}
Vector() : data(nullptr), reserveSize(0ul), size(0ul) { }
};

View File

@@ -3,145 +3,126 @@
namespace BinaryTree
{
template <class T>
struct Node
{
T value;
template<class T> struct Node
{
T value;
std::unique_ptr<Node<T>> left;
std::unique_ptr<Node<T>> right;
std::unique_ptr<Node<T>> left;
std::unique_ptr<Node<T>> right;
bool HasChildren() const
{
return static_cast<bool>(left) || static_cast<bool>(right);
}
bool HasChildren() const { return static_cast<bool>(left) || static_cast<bool>(right); }
bool IsLeaf() const
{
return !HasChildren();
}
bool IsLeaf() const { return !HasChildren(); }
Node(T const &_value)
: value(_value),
left(nullptr),
right(nullptr)
{
}
};
Node(T const & _value) : value(_value), left(nullptr), right(nullptr) { }
};
template <class T>
class Tree
{
private:
std::unique_ptr<Node<T>> root;
template<class T> class Tree {
private:
std::unique_ptr<Node<T>> root;
T ExtractSmallestLeaf(std::unique_ptr<Node<T>> &node)
{
std::unique_ptr<Node<T>> *nodePtr = &(node);
while ((*nodePtr)->HasChildren())
{
if((*nodePtr)->left)
{
nodePtr = &((*nodePtr)->left);
}
else
{
T value = (*nodePtr)->value;
(*nodePtr) = std::move((*nodePtr)->right);
return value;
}
}
T ExtractSmallestLeaf(std::unique_ptr<Node<T>> & node)
{
std::unique_ptr<Node<T>> * nodePtr = &(node);
while((*nodePtr)->HasChildren())
{
if((*nodePtr)->left)
{
nodePtr = &((*nodePtr)->left);
}
else
{
T value = (*nodePtr)->value;
(*nodePtr) = std::move((*nodePtr)->right);
return value;
}
}
T value = (*nodePtr)->value;
(*nodePtr).release();
return value;
}
T value = (*nodePtr)->value;
(*nodePtr).release();
return value;
}
void DeleteNode(std::unique_ptr<Node<T>> & node)
{
if(!node || node->IsLeaf())
{
node.release();
return;
}
void DeleteNode(std::unique_ptr<Node<T>> & node)
{
if(!node || node->IsLeaf())
{
node.release();
return;
}
if(!(node->left))
{
node = std::move(node->right);
return;
}
if(!(node->left))
{
node = std::move(node->right);
return;
}
if(!(node->right))
{
node = std::move(node->left);
return;
}
if(!(node->right))
{
node = std::move(node->left);
return;
}
// In order successor
// In order successor
auto newNodeValue = ExtractSmallestLeaf(node->right);
node->value = newNodeValue;
}
auto newNodeValue = ExtractSmallestLeaf(node->right);
node->value = newNodeValue;
}
std::unique_ptr<Node<T>> & FindNode(T const & value)
{
std::unique_ptr<Node<T>> *currentPtr = &root;
while (*currentPtr && (*currentPtr)->value != value)
{
if ((*currentPtr)->value > value)
{
currentPtr = &((*currentPtr)->left);
}
else
{
currentPtr = &((*currentPtr)->right);
}
}
return *currentPtr;
}
std::unique_ptr<Node<T>> & FindNode(T const & value)
{
std::unique_ptr<Node<T>> * currentPtr = &root;
while(*currentPtr && (*currentPtr)->value != value)
{
if((*currentPtr)->value > value)
{
currentPtr = &((*currentPtr)->left);
}
else
{
currentPtr = &((*currentPtr)->right);
}
}
return *currentPtr;
}
public:
void Insert(T const & value)
{
std::unique_ptr<Node<T>> *currentPtr = &root;
while (*currentPtr)
{
if ((*currentPtr)->value > value)
{
currentPtr = &((*currentPtr)->left);
}
else
{
currentPtr = &((*currentPtr)->right);
}
}
*currentPtr = std::make_unique<Node<T>>(value);
}
public:
void Insert(T const & value)
{
std::unique_ptr<Node<T>> * currentPtr = &root;
while(*currentPtr)
{
if((*currentPtr)->value > value)
{
currentPtr = &((*currentPtr)->left);
}
else
{
currentPtr = &((*currentPtr)->right);
}
}
*currentPtr = std::make_unique<Node<T>>(value);
}
void InsertNoDuplicates(T const & value)
{
auto & toInsertIn = FindNode(value);
if(toInsertIn)
{
return;
}
void InsertNoDuplicates(T const & value)
{
auto & toInsertIn = FindNode(value);
if(toInsertIn)
{
return;
}
toInsertIn = std::make_unique<Node<T>>(value);
}
toInsertIn = std::make_unique<Node<T>>(value);
}
bool Contains(T const & value)
{
return static_cast<bool>(FindNode(value));
}
bool Contains(T const & value) { return static_cast<bool>(FindNode(value)); }
void Delete(T const & value)
{
auto & node = FindNode(value);
DeleteNode(node);
}
void Delete(T const & value)
{
auto & node = FindNode(value);
DeleteNode(node);
}
Tree()
: root(nullptr)
{}
};
Tree() : root(nullptr) { }
};
} // namespace BinaryTree

View File

@@ -1,182 +1,183 @@
#include "../src/tree/binarytree.hpp"
#include "testutil.hpp"
#include <vector>
#include <unordered_set>
#include <vector>
void FillWithUniqueRandomNumbers(BinaryTree::Tree<unsigned> & tree,
std::unordered_set<unsigned> & control,
unsigned const count = 10000u)
void FillWithUniqueRandomNumbers(
BinaryTree::Tree<unsigned> & tree,
std::unordered_set<unsigned> & control,
unsigned const count = 10000u)
{
for(unsigned i = 0u; i < count; ++i)
{
unsigned const value = Util::GetRandomNumber();
control.insert(value);
tree.InsertNoDuplicates(value);
}
for(unsigned i = 0u; i < count; ++i)
{
unsigned const value = Util::GetRandomNumber();
control.insert(value);
tree.InsertNoDuplicates(value);
}
}
bool TestInsert()
{
unsigned const testSize = 4096;
unsigned const testSize = 4096;
std::vector<unsigned> control;
BinaryTree::Tree<unsigned> tree;
std::vector<unsigned> control;
BinaryTree::Tree<unsigned> tree;
for(unsigned i = 0u; i < testSize; ++i)
{
unsigned const value = Util::GetRandomNumber();
control.push_back(value);
tree.Insert(value);
}
for(auto const & num : control)
{
if(!tree.Contains(num))
{
//std::printf("\tValue %u inserted but cannot be found!\n", num);
return false;
}
}
for(unsigned i = 0u; i < testSize; ++i)
{
unsigned const value = Util::GetRandomNumber();
control.push_back(value);
tree.Insert(value);
}
return true;
for(auto const & num: control)
{
if(!tree.Contains(num))
{
//std::printf("\tValue %u inserted but cannot be found!\n", num);
return false;
}
}
return true;
}
bool TestInsertNoDuplicates()
{
std::unordered_set<unsigned> control;
BinaryTree::Tree<unsigned> tree;
std::unordered_set<unsigned> control;
BinaryTree::Tree<unsigned> tree;
FillWithUniqueRandomNumbers(tree, control);
for(auto const & num : control)
{
if(!tree.Contains(num))
{
//std::printf("\tValue %u inserted but cannot be found!\n", num);
return false;
}
}
FillWithUniqueRandomNumbers(tree, control);
return true;
for(auto const & num: control)
{
if(!tree.Contains(num))
{
//std::printf("\tValue %u inserted but cannot be found!\n", num);
return false;
}
}
return true;
}
bool TestDeletion()
{
std::unordered_set<unsigned> control;
BinaryTree::Tree<unsigned> tree;
std::unordered_set<unsigned> control;
BinaryTree::Tree<unsigned> tree;
FillWithUniqueRandomNumbers(tree, control);
FillWithUniqueRandomNumbers(tree, control);
std::vector<unsigned> deletedValues;
unsigned const toDeleteCount = control.size() / 4;
for(unsigned i = 0u; i < toDeleteCount; ++i)
{
auto const valueTodelete = Util::GetRandomNumber();
std::vector<unsigned> deletedValues;
unsigned const toDeleteCount = control.size() / 4;
for(unsigned i = 0u; i < toDeleteCount; ++i)
{
auto const valueTodelete = Util::GetRandomNumber();
auto controlElement = control.find(valueTodelete);
if(controlElement != control.end())
{
control.erase(controlElement);
tree.Delete(valueTodelete);
deletedValues.push_back(valueTodelete);
}
}
for(auto const & num : control)
{
if(!tree.Contains(num))
{
std::puts("[ERROR] Tree does not contain a value that it should.");
//std::printf("Value %u inserted but cannot be found!\n", num);
return false;
}
}
auto controlElement = control.find(valueTodelete);
if(controlElement != control.end())
{
control.erase(controlElement);
tree.Delete(valueTodelete);
deletedValues.push_back(valueTodelete);
}
}
for(auto const & num : deletedValues)
{
if(tree.Contains(num))
{
std::puts("[ERROR] Tree contains deleted value that it should not.");
return false;
}
}
for(auto const & num: control)
{
if(!tree.Contains(num))
{
std::puts("[ERROR] Tree does not contain a value that it should.");
//std::printf("Value %u inserted but cannot be found!\n", num);
return false;
}
}
return true;
for(auto const & num: deletedValues)
{
if(tree.Contains(num))
{
std::puts("[ERROR] Tree contains deleted value that it should not.");
return false;
}
}
return true;
}
bool TestDeletionCase(
std::vector<unsigned> const toInsert,
std::vector<unsigned> const toDelete,
std::vector<unsigned> const result)
std::vector<unsigned> const toInsert,
std::vector<unsigned> const toDelete,
std::vector<unsigned> const result)
{
BinaryTree::Tree<unsigned> tree;
for(auto n : toInsert)
{
tree.Insert(n);
}
BinaryTree::Tree<unsigned> tree;
for(auto n: toInsert)
{
tree.Insert(n);
}
for(auto n : toDelete)
{
tree.Delete(n);
}
bool ok = true;
for(auto n : result)
{
if(!tree.Contains(n))
{
std::printf("[ERROR] Tree does not contain value %u.\n", n);
ok = false;
}
}
for(auto n: toDelete)
{
tree.Delete(n);
}
for(auto n : toDelete)
{
if(tree.Contains(n))
{
std::printf("[ERROR] Tree contains deleted value %u.\n", n);
ok = false;
}
}
bool ok = true;
for(auto n: result)
{
if(!tree.Contains(n))
{
std::printf("[ERROR] Tree does not contain value %u.\n", n);
ok = false;
}
}
return ok;
for(auto n: toDelete)
{
if(tree.Contains(n))
{
std::printf("[ERROR] Tree contains deleted value %u.\n", n);
ok = false;
}
}
return ok;
}
bool TestDeletionCases()
{
std::puts("[INFO] Testing deleting root with single child right.");
TestDeletionCase(
std::vector<unsigned> { 10, 12, 11, 13},
std::vector<unsigned> { 10 },
std::vector<unsigned> { 12, 11, 13 });
std::puts("[INFO] Testing deleting root with single child left.");
TestDeletionCase(
std::vector<unsigned> { 15, 12, 11, 13},
std::vector<unsigned> { 15 },
std::vector<unsigned> { 12, 11, 13 });
std::puts("[INFO] Testing deleting root with 2 children but no child right left.");
TestDeletionCase(
std::vector<unsigned> { 15, 10, 20, 22, 25, 18, 5},
std::vector<unsigned> { 20 },
std::vector<unsigned> { 15, 10, 22, 25, 18, 5 });
std::puts("[INFO] Testing deleting root with 2 children.");
TestDeletionCase(
std::vector<unsigned> { 50, 40, 60, 75, 55, 45, 42, 58 },
std::vector<unsigned> { 50 },
std::vector<unsigned> { 40, 60, 75, 55, 45, 42, 58 });
std::puts("[INFO] Testing deleting root with single child right.");
TestDeletionCase(
std::vector<unsigned> {10, 12, 11, 13},
std::vector<unsigned> {10},
std::vector<unsigned> {12, 11, 13});
return true;
std::puts("[INFO] Testing deleting root with single child left.");
TestDeletionCase(
std::vector<unsigned> {15, 12, 11, 13},
std::vector<unsigned> {15},
std::vector<unsigned> {12, 11, 13});
std::puts("[INFO] Testing deleting root with 2 children but no child right left.");
TestDeletionCase(
std::vector<unsigned> {15, 10, 20, 22, 25, 18, 5},
std::vector<unsigned> {20},
std::vector<unsigned> {15, 10, 22, 25, 18, 5});
std::puts("[INFO] Testing deleting root with 2 children.");
TestDeletionCase(
std::vector<unsigned> {50, 40, 60, 75, 55, 45, 42, 58},
std::vector<unsigned> {50},
std::vector<unsigned> {40, 60, 75, 55, 45, 42, 58});
return true;
}
int main()
{
Test::Execute(TestInsert, "Insertion and find test");
Test::Execute(TestInsertNoDuplicates, "Insertion without duplicates test");
Test::Execute(TestDeletion, "Insertion and deletion test");
Test::Execute(TestDeletionCases, "Deletion cases test");
Test::Execute(TestInsert, "Insertion and find test");
Test::Execute(TestInsertNoDuplicates, "Insertion without duplicates test");
Test::Execute(TestDeletion, "Insertion and deletion test");
Test::Execute(TestDeletionCases, "Deletion cases test");
return 0;
return 0;
}

View File

@@ -3,135 +3,135 @@
bool TestAppending()
{
unsigned const testSize = 5;
unsigned const testSize = 5;
std::vector<unsigned> truth;
List::List<unsigned> list;
std::vector<unsigned> truth;
List::List<unsigned> list;
truth.resize(testSize);
for(unsigned i = 0; i < testSize; ++i)
{
unsigned const value = Util::GetRandomNumber();
truth[i] = value;
list.Append(value);
}
truth.resize(testSize);
for(unsigned i = 0; i < testSize; ++i)
{
unsigned const value = Util::GetRandomNumber();
truth[i] = value;
list.Append(value);
}
for(unsigned i = 0; i < testSize; ++i)
{
if(truth[i] != list[i])
{
return false;
}
}
for(unsigned i = 0; i < testSize; ++i)
{
if(truth[i] != list[i])
{
return false;
}
}
return true;
return true;
}
bool TestPrepending()
{
unsigned const testSize = 5;
unsigned const testSize = 5;
std::vector<unsigned> truth;
List::List<unsigned> list;
std::vector<unsigned> truth;
List::List<unsigned> list;
truth.resize(testSize);
for(unsigned i = testSize; i > 0; --i)
{
unsigned const value = Util::GetRandomNumber();
truth[i - 1] = value;
list.Prepend(value);
}
truth.resize(testSize);
for(unsigned i = testSize; i > 0; --i)
{
unsigned const value = Util::GetRandomNumber();
truth[i - 1] = value;
list.Prepend(value);
}
for(unsigned i = 0; i < testSize; ++i)
{
if(truth[i] != list[i])
{
return false;
}
}
for(unsigned i = 0; i < testSize; ++i)
{
if(truth[i] != list[i])
{
return false;
}
}
return true;
return true;
}
bool TestPrependAppendMix()
{
std::vector<unsigned> numbers = { 5, 6, 4, 7, 3, 8, 2, 9, 1, 10 };
List::List<unsigned> list;
std::vector<unsigned> numbers = {5, 6, 4, 7, 3, 8, 2, 9, 1, 10};
List::List<unsigned> list;
for(unsigned i = 0; i < numbers.size(); i += 2)
{
list.Prepend(numbers[i]);
list.Append(numbers[i + 1]);
}
for(unsigned i = 0; i < numbers.size(); i += 2)
{
list.Prepend(numbers[i]);
list.Append(numbers[i + 1]);
}
for(unsigned i = 0; i < list.GetSize(); ++i)
{
if(list[i] != i + 1)
{
return false;
}
}
for(unsigned i = 0; i < list.GetSize(); ++i)
{
if(list[i] != i + 1)
{
return false;
}
}
return true;
return true;
}
bool TestDeletion()
{
List::List<unsigned> list;
List::List<unsigned> list;
for(unsigned i = 1; i < 8; ++i)
{
list.Append(i);
}
for(unsigned i = 1; i < 8; ++i)
{
list.Append(i);
}
for(unsigned i = 0; i < list.GetSize(); ++i)
{
list.Delete(i);
}
for(unsigned i = 0; i < list.GetSize(); ++i)
{
list.Delete(i);
}
for(unsigned i = 0; i < list.GetSize(); ++i)
{
if(list[i] % 2 != 0)
{
return false;
}
}
for(unsigned i = 0; i < list.GetSize(); ++i)
{
if(list[i] % 2 != 0)
{
return false;
}
}
return true;
return true;
}
bool TestInsertion()
{
unsigned const testSize = 11;
List::List<unsigned> list;
unsigned const testSize = 11;
List::List<unsigned> list;
for(unsigned i = 1; i < testSize; i += 2)
{
list.Append(i);
}
for(unsigned i = 1; i < testSize; i += 2)
{
list.Append(i);
}
for(unsigned i = 1; i < testSize - 2; i += 2)
{
list.Insert(i + 1, i);
}
for(unsigned i = 1; i < testSize - 2; i += 2)
{
list.Insert(i + 1, i);
}
for(unsigned i = 1; i <= list.GetSize(); ++i)
{
if(list[i - 1] != i)
{
return false;
}
}
for(unsigned i = 1; i <= list.GetSize(); ++i)
{
if(list[i - 1] != i)
{
return false;
}
}
return true;
return true;
}
int main()
{
Test::Execute(TestAppending, "Appending test");
Test::Execute(TestPrepending, "Prepending test");
Test::Execute(TestPrependAppendMix, "Prepend append mix test");
Test::Execute(TestDeletion, "Deletion test");
Test::Execute(TestInsertion, "Insertion test");
return 0;
Test::Execute(TestAppending, "Appending test");
Test::Execute(TestPrepending, "Prepending test");
Test::Execute(TestPrependAppendMix, "Prepend append mix test");
Test::Execute(TestDeletion, "Deletion test");
Test::Execute(TestInsertion, "Insertion test");
return 0;
}

View File

@@ -3,58 +3,58 @@
bool TestInsertion()
{
std::size_t const testSize = 512u;
std::size_t const testSize = 512u;
std::vector<unsigned> truth;
truth.resize(testSize);
RingBuffer<unsigned> ringBuffer(512u);
std::vector<unsigned> truth;
truth.resize(testSize);
RingBuffer<unsigned> ringBuffer(512u);
for(std::size_t i = 0; i < testSize; ++i)
{
truth[i] = Util::GetRandomNumber();
ringBuffer.Push(truth[i]);
}
for(std::size_t i = 0; i < testSize; ++i)
{
truth[i] = Util::GetRandomNumber();
ringBuffer.Push(truth[i]);
}
for(std::size_t i = 0; i < testSize; ++i)
{
if(truth[i] != ringBuffer.Pop())
{
return false;
}
}
for(std::size_t i = 0; i < testSize; ++i)
{
if(truth[i] != ringBuffer.Pop())
{
return false;
}
}
return true;
return true;
}
bool TestWrapAround()
{
std::size_t const testSize = 32u;
std::size_t const testSize = 32u;
RingBuffer<unsigned> ringBuffer(testSize);
for(std::size_t i = 0; i < testSize / 2u; ++i)
{
ringBuffer.Push(42u);
}
RingBuffer<unsigned> ringBuffer(testSize);
for(std::size_t i = 0; i < testSize / 2u; ++i)
{
ringBuffer.Push(42u);
}
for(std::size_t i = 0; i < testSize; ++i)
{
ringBuffer.Push(i);
}
for(std::size_t i = 0; i < testSize; ++i)
{
ringBuffer.Push(i);
}
for(std::size_t i = 0; i < testSize; ++i)
{
if(ringBuffer.Pop() != i)
{
return false;
}
}
for(std::size_t i = 0; i < testSize; ++i)
{
if(ringBuffer.Pop() != i)
{
return false;
}
}
return true;
return true;
}
int main()
{
Test::Execute(TestInsertion, "Insertion test");
Test::Execute(TestWrapAround, "Wrap around test");
return 0;
Test::Execute(TestInsertion, "Insertion test");
Test::Execute(TestWrapAround, "Wrap around test");
return 0;
}

View File

@@ -4,32 +4,32 @@
bool TestStack()
{
std::size_t testSize = 512ul;
std::size_t testSize = 512ul;
std::stack<unsigned> truth;
Stack<unsigned> stack;
std::stack<unsigned> truth;
Stack<unsigned> stack;
for(std::size_t i = 0; i < testSize; ++i)
{
unsigned const toInsert = Util::GetRandomNumber();
truth.push(toInsert);
stack.Push(toInsert);
}
for(std::size_t i = 0; i < testSize; ++i)
{
unsigned const toInsert = Util::GetRandomNumber();
truth.push(toInsert);
stack.Push(toInsert);
}
while(!truth.empty())
{
if(truth.top() != stack.Pop())
{
return false;
}
truth.pop();
}
while(!truth.empty())
{
if(truth.top() != stack.Pop())
{
return false;
}
truth.pop();
}
return true;
return true;
}
int main()
{
Test::Execute(TestStack, "Pop push test");
return 0;
Test::Execute(TestStack, "Pop push test");
return 0;
}

View File

@@ -7,57 +7,57 @@
namespace Util
{
unsigned static GetRandomNumber()
{
static std::default_random_engine eng;
static std::uniform_int_distribution<unsigned> valueDist(0u, 8096u);
unsigned static GetRandomNumber()
{
static std::default_random_engine eng;
static std::uniform_int_distribution<unsigned> valueDist(0u, 8096u);
return valueDist(eng);
}
return valueDist(eng);
}
};
namespace Test
{
void Execute(bool (*testFunction)(void), char const * const message)
{
try
{
if(testFunction())
{
std::printf("[PASS] %s\n", message);
}
else
{
std::printf("[FAIL] %s\n", message);
}
}
catch(std::exception & e)
{
std::printf("[FAIL] Exception thrown during execution of <%s>, error: %s\n", message, e.what());
}
}
void Execute(bool (*testFunction)(void), char const * const message)
{
try
{
if(testFunction())
{
std::printf("[PASS] %s\n", message);
}
else
{
std::printf("[FAIL] %s\n", message);
}
}
catch(std::exception & e)
{
std::printf("[FAIL] Exception thrown during execution of <%s>, error: %s\n", message, e.what());
}
}
void Execute(bool (*testFunction)(std::vector<std::string> &), char const * const message)
{
std::vector<std::string> issues;
try
{
if(testFunction(issues))
{
std::printf("[PASS] %s\n", message);
}
else
{
std::printf("[FAIL] %s\n", message);
for(auto & issue : issues)
{
std::printf(" Issue: %s\n", issue.c_str());
}
}
}
catch(std::exception & e)
{
std::printf("[FAIL] Exception thrown during execution of <%s>, error: %s\n", message, e.what());
}
}
void Execute(bool (*testFunction)(std::vector<std::string> &), char const * const message)
{
std::vector<std::string> issues;
try
{
if(testFunction(issues))
{
std::printf("[PASS] %s\n", message);
}
else
{
std::printf("[FAIL] %s\n", message);
for(auto & issue: issues)
{
std::printf(" Issue: %s\n", issue.c_str());
}
}
}
catch(std::exception & e)
{
std::printf("[FAIL] Exception thrown during execution of <%s>, error: %s\n", message, e.what());
}
}
};

View File

@@ -1,111 +1,110 @@
#include "../src/sequential/vector.hpp"
#include "testutil.hpp"
void FillWithSequentialNumbers(Vector<unsigned> & vector,
unsigned const count = 1024u)
void FillWithSequentialNumbers(Vector<unsigned> & vector, unsigned const count = 1024u)
{
for(unsigned i = 0; i < count; ++i)
{
vector[i] = i;
}
for(unsigned i = 0; i < count; ++i)
{
vector[i] = i;
}
}
bool TestInsertion()
{
unsigned const targetSize = 1024u;
Vector<unsigned> vector;
try
{
vector.Resize(targetSize);
}
catch(std::exception & e)
{
return false;
}
unsigned const targetSize = 1024u;
Vector<unsigned> vector;
try
{
vector.Resize(targetSize);
}
catch(std::exception & e)
{
return false;
}
FillWithSequentialNumbers(vector, targetSize);
FillWithSequentialNumbers(vector, targetSize);
for(unsigned i = 0; i < vector.GetSize(); ++i)
{
if(vector[i] != i)
{
return false;
}
}
for(unsigned i = 0; i < vector.GetSize(); ++i)
{
if(vector[i] != i)
{
return false;
}
}
try
{
vector[targetSize + 1] = 42;
}
catch(std::exception & e)
{
return true;
}
try
{
vector[targetSize + 1] = 42;
}
catch(std::exception & e)
{
return true;
}
return false;
return false;
}
bool TestResize()
{
Vector<unsigned> vector;
Vector<unsigned> vector;
vector.Resize(2048u);
FillWithSequentialNumbers(vector);
vector.Resize(2048u);
FillWithSequentialNumbers(vector);
vector.Resize(vector.GetSize() / 2u);
for(unsigned i = 0; i < vector.GetSize(); ++i)
{
if(vector[i] != i)
{
return false;
}
}
vector.Resize(vector.GetSize() / 2u);
for(unsigned i = 0; i < vector.GetSize(); ++i)
{
if(vector[i] != i)
{
return false;
}
}
vector.Resize(vector.GetSize() * 16u);
vector.Resize(vector.GetSize() * 16u);
return true;
return true;
}
bool TestReserve()
{
std::size_t const testSize = 8096ul;
std::size_t const testSize = 8096ul;
Vector<unsigned> vector;
vector.Reserve(testSize);
if(vector.GetReserveSize() != testSize)
{
std::puts("[ERROR] Reserve size reported not equal to reserve size set.");
return false;
}
Vector<unsigned> vector;
vector.Reserve(testSize);
if(vector.GetReserveSize() != testSize)
{
std::puts("[ERROR] Reserve size reported not equal to reserve size set.");
return false;
}
for(std::size_t i = 0; i < testSize; ++i)
{
vector.Resize(i + 1ul);
vector[i] = i;
for(std::size_t i = 0; i < testSize; ++i)
{
vector.Resize(i + 1ul);
vector[i] = i;
if(vector.GetReserveSize() != testSize)
{
std::puts("[ERROR] Reserve size changed during resize.");
return false;
}
}
if(vector.GetReserveSize() != testSize)
{
std::puts("[ERROR] Reserve size changed during resize.");
return false;
}
}
for(std::size_t i = 0; i < testSize; ++i)
{
if(vector[i] != i)
{
return false;
}
}
for(std::size_t i = 0; i < testSize; ++i)
{
if(vector[i] != i)
{
return false;
}
}
return true;
return true;
}
int main()
{
Test::Execute(TestInsertion, "Insertion test");
Test::Execute(TestResize, "Resize test");
Test::Execute(TestReserve, "Reserve test");
Test::Execute(TestInsertion, "Insertion test");
Test::Execute(TestResize, "Resize test");
Test::Execute(TestReserve, "Reserve test");
return 0;
return 0;
}